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Construction of the Absorbing Boundary Conditions
for the FDTD Method with Transfer Functions

Jianyi Zhou and Wei Hong

Abstract—The absorbing boundary conditions (ABC’s) are essential to
terminate the computational space when the finite-difference time-domain
(FDTD) method is applied to analyze electromagnetic (EM) problems.
With the ABC’s, the fields on the truncated boundaries are evaluated
by the interior fields. In this paper, the relationship between the fields
on the terminated boundaries and the interior fields is expressed as the
transfer functions in the Z-domain. The proper transfer functions are
determined from the radiation condition or the transmission condition.
Simplifying these transfer functions into rational functions, we obtain
different schemes of the ABC’s. In this paper, both the transfer func-
tions and coefficients of the final ABC’s are derived and expressed as
recurrence formulas for the convenience of programming. This method
has the property of simplicity and flexibility. The ABC’s obtained by this
method show good absorbing performance and numerical stability in the
practical applications.

Index Terms—FDTD methods.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method is a full-wave
approach for the analysis of electromagnetic (EM) problems [1].
When the FDTD method is used to solve open-structure EM problems
such as scattering, antenna, and discontinuity problems, absorbing
boundary conditions (ABC’s) are required to terminate the meshes.

Investigators have paid much attention to the application and
improvement of ABC’s during the last several decades. There are
two popular ways used to construct the ABC’s, one is the usage of
outgoing wave equations, another is the employment of nonphysical
absorbing media. Engquist and Majda [2] first used the outgoing
wave equations to construct ABC’s, and Mur [3] improved them
and presented the widely used Mur’s ABC’s. Mur’s ABC’s can
adequately absorb the outgoing waves that are incident perpendicular
to the truncated boundaries. However, when the incident angles of
the outgoing waves increase, the absorbing performance of the Mur’s
ABC’s rapidly becomes worse. The dispersive boundary conditions
developed by Bi [4] and improved by Zhaoet al. [5] can adequately
absorb the outgoing waves incident with several different angles. On
the other hand, great development has been made on the usage of
nonphysical absorbing media to truncate the FDTD meshes in the last
two years. The perfect matched layer (PML) proposed by Berenger
[6] can perfectly absorb the scattered waves with the incident angle
in a large range.

In this paper, we use the transfer function to construct the ABC’s
for the first time. Proper transfer functions are determined from the
radiation condition or the transmission condition and, by some simple
transformation, the FD schemes of the ABC’s are obtained. In this
paper, we present the transfer functions and coefficients of the final
ABC’s with recurrence formulas. These recurrence formulas are very
convenience for programming. The validity and priority of the method
are shown by several numerical examples.
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Fig. 1. Reflection caused by different ABC’s.

II. CONSTRUCTION OF THEABC’S

For convenience, we use the transfer functions in theZ-domain
to describe the characteristic of the system because it is very easy to
transform the transfer functions in theZ-domain into the FD schemes.
We assume that the scattered wave propagates along the�x-direction
with the phase velocity�, and the truncated boundary is set atx = 0.
In the Z-domain, the relationship between the boundary fields and
interior fields is expressed as

E0(z) =

p

k=1

hk(z)Ek(z) (1)

whereE0(z) is theZ-transformation of the boundary fieldEk(z),
k = 1; 2; � � � ; p are theZ-transformations of the interior fields atk
steps away from the boundary along thex-direction,hk(z) are the
transfer functions, andp is the order of the ABC.

According to the radiation condition or the transmission condition,
Ek(z), k = 1; 2; � � � ; p � 1 must satisfy

Ek(z) = z�sEk+1(z) (2)

wheres = (�x=��t); �x; �t are the space and time increments,
respectively. Thus, a wave propagates along the�x-direction with
the phase velocity� being adequately absorbed. The following linear
equation abouthk(z) is obtained:

dp =

p

k=1

dp�khk(z) (3)

where d = z�s.
In practice, the phase velocity� is determined by the incident

angle � of the scattered wave or the effective dielectric constant
�re� of the transmission lines, i.e.,� = c= cos � or � = c=

p
�re� ;

where c denotes the light velocity. To absorb the scattered wave
with a different incident angle in a wide-frequency band,p different
velocities�i, i = 1; 2; � � � ; p are used. Thus, a system ofp linear
equations is obtained as follows:

dp�11 dp�21 � � � 1
dp�12 dp�22 � � � 1

...
...

. . .
...

dp�1p dp�2p � � � 1

h1(z)
h2(z)

...
hp(z)

=

dp1
dp2
...
dpp

: (4)

Observing (4) carefully, we find thatdi are thep roots of the
following polynomial equation:

xp � h1(z)x
p�1 � h2(z)x

p�2 � � � � � hp(z) = 0: (5)
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Fig. 2. Configuration and numerical results of a rectangular post in a waveguide. (a) Configuration of the discontinuity. (b)jS11j versus the frequency.
(c) jS21j versus the frequency. (d)jS11j2 + jS21j2 versus the frequency.

On the other hand, (5) can be written as
p

i�1

(x� di) = 0: (6)

By expanding (6) and comparing the coefficients with (5) yields
the transfer functionshk(z). In fact, the recurrence formulas of the
transfer functionshk(z) can be derived as follows:

h
(1)
1 (z) = d1 (7)

h
(p+1)
1 (z) =h

(p)
1 (z) + dp+1 (8)

h
(p+1)
k (z) =h

(p)
k (z)� dp+1h

(p)
k�1(z); k = 2; 3; � � � ; p (9)

h
(p+1)
p+1 (z) = � dp+1h

(p)
p (z) (10)

where,h(p)k is thekth transfer function of apth-order ABC.
In the transfer functions, the factors is usually not an integer,

which means that time delay of a space increment is not an integer
time of the time increment, thus, the transfer functions cannot directly
be changed into difference schemes. In practical applications, proper
simplification is required to transform these transfer functions into
rational functions. Some examples are as follows:

z
�s

� 1 + s(z�1 � 1) = (1� s) + sz
�1 (11)

z
�s =

1

zs
�

1

1� s(z�1 � 1)
=

1

(1 + s)� sz�1
(12)

z
�s =

z�
1 + s

2

z�
1� s

2

�

1 +
1 + s

2
(z�1 � 1)

1 +
1� s

2
(z�1 � 1)

=
(1� s) + (1 + s)z�1

(1 + s) + (1� s)z�1
(13)

where the factorz�1 is a time-increment delay. In these examples,
(12) is identical to the dispersive boundary condition in [5], and (13)
is identical to the first-order Mur’s or Higdon’s ABC’s [7]. Though

(13) is more accurate than (11) and (12), it tends to be unstable in
high-order applications. In this paper, (11) is used. It is stable and
simple. The FD scheme of the boundary condition can be expressed as

E
n
0 =

p

k=1

k

j=0

c
(p)
k;jE

n�j

k (14)

whereE
n�j

k denotes the electric field at time(n � j)�t and k�x

away from the boundary,c(p)k;j is the coefficient which denotes the
coefficient of the itemEn�j

k in thepth-order ABC. There is no item
E

n�k
0 in (14), which means there is no direct feedback in the ABC,

thus, the ABC’s have better stability as the finite-impulse response
(FIR) filters. There are recurrence formulas for the coefficientsc

(p)
k;j .

If we let

ai =(1� si) (15)

bi = si (16)

then we have

c
(1)
1;0 = a1 (17)

c
(1)
1;1 = b1 (18)

c
(p+1)
1;0 = c

(p)
1;0 + ap+1 (19)

c
(p+1)
1;1 = c

(p)
1;1 + bp+1 (20)

c
(p+1)
k;0 = c

(p)
k;0 � a

p+1
c
(p)
k�1;0; k = 2; � � � ; p (21)

c
(p+1)
k;j = c

(p)
k;j � ap+1c

(p)
k�1;j � bp+1c

(p)
k�1;j�1; k = 2; � � � ; p;

j = 1; � � � ; k � 1 (22)

c
(p+1)
k;k = c

(p)
k;k � bp+1c

(p)
k�1:k�1; k = 2; � � � ; p (23)

c
(p+1)
p+1;0 =�ap+1c

(p)
p;0 (24)

c
(p+1)
p+1;j =�ap+1c

(p)
p;j � bp+1c

(p)
p;j�1; j = 1; � � � ; p (25)

c
(p+1)
p+1;p+1 =�bp+1c

(p)
p; p: (26)
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If the scattered wave attenuates along the�x-direction with the
factor�, thend can be replaced asd = e���xz�s. When high-order
ABC’s are used, approximate values of�i and�i are adequate. In
fact, one may select these values in a range according to the incident
angles and attenuation fact of the wave in the frequency band of
interest.

III. N UMERICAL RESULTS

In this paper, we give the reflection coefficient caused by a
third-order ABC, which is developed when it is used to analyze
a rectangular waveguide WR-28. The results are shown in Fig. 1,
together with the results obtained when we use the first-order Mur’s
ABC and 16-layer PML as comparison. The parameters of the ABC
were selected as�1 = 1:2c, � = 1:4c, and�3 = 1:6c. The type of
PML used was PML(16, P, 0.001).

The ABC has been used to calculate theS-parameters of a
rectangular dielectric post in a rectangular waveguide WR-28. The
cross section of the post is 4 mm� 2 mm, and the dielectric
constant�r is 8.2, as shown in Fig. 2(a). Resonance occurred near
the frequencyf = 34 GHz, and very strong high-order modes were
excited. In this case, if the truncated plane is set very close to the
discontinuity, the ABC should absorb both the dominant and high-
order modes, which is demonstrated in [8]. A fifth-order ABC was
applied where the phase velocities were selected as�1 = 1:2c,
�2 = 1:4c, �3 = 1:6c, �4 � c, �5 � c, and the attenuation factors
were selected as�1�x = 0, �2�x = 0, �3�x = 0, �4�x = 0:02,
�5�x = 0:05. Better results were obtained when the distance between
the ABC and discontinuity is 3 mm, as shown in Fig. 2(b)–(d).
Since the ordinary PML cannot absorb the high-order (cutoff) modes
adequately, it fails to obtain correct results unless the distance is much
larger. Our ABC can obtain reasonable results even if the distance is
very small, and the computational memory and time can be greatly
saved. Since the derivation is not limited two-dimensionally, the ABC
can be applied in a three-dimensional (3-D) problems.

IV. CONCLUSION

In this paper, we use transfer functions to construct ABC’s for
the first time. Recurrence formulas for the transfer functions and
coefficients of the final FD schemes of the ABC’s are developed.
It is quite simple and convenient to apply the ABC’s in the FDTD
iteration. A lot of computational time and memory can be saved with
the ABC’s. Numerical results show the good absorbing performance
of the ABC in practical problems.
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Edge-Element Formulation of
Three-Dimensional Structures

Jilin Tan, Guangwen Pan, and Barry K. Gilbert

Abstract—A three-dimensional (3-D) asymmetrical functional is devel-
oped and implemented as a hybrid-vector edge-element method. The
equivalent frequency-dependent circuit parameters are then extracted
from the field solutions. Laboratory measurements and data comparison
with previous published results strongly support the newly developed
theoretical work.

Index Terms—Edge element, functional.

I. INTRODUCTION

In this paper, we have developed a new functional for general
three-dimensional (3-D) guided-wave structures, which need not have
completely closed metallic walls. We shall then derive the termination
conditions at the planes of incidence and transmittance. Utilizing
prior information of the eigenmodes resulting from the evaluation
of the two-and-one-half-dimensional edge-element solver [1], the
3-D field solutions are obtained. The frequency-dependent circuit
parameters (such asL, C, R, and G) are converted according to
relevant equivalent circuits of the structures.

II. BASIC THEORY

We begin with the vector-wave-propagation equation

r�
1

�r
r� ~E �~~�rk

2

0 �
~E = �j!� ~J in V: (1)

The boundary conditions for (1) are

n̂� ~E = ~P ; onS1
1

�r
n̂�r� ~E + 
vn̂� n̂� ~E = ~V ; onS2:

(2)

In the previous equations,S1 is the surface where the boundary
condition of the first kind applies,S2 is the surface where
the boundary condition of the third kind applies, and
v =
jk0 (�rc � j(�=!�0)=�rc); as defined in [1]. In the application
of this theory to transmission-line structures and their discontinuities,
the field component in the signal-propagation direction is generally
nonzero, and the aforementioned boundary conditions are insufficient.
On both the incident and transmitted planes, the longitudinal
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